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Abstract

Toluene diisocyanate (TDI) is a leading cause of chemical-induced occupational asthma which 

impacts workers in a variety of industries worldwide. Recently, the robust regulatory potential of 

regulatory T cells (Tregs) has become apparent, including their functional role in the regulation of 

allergic disease; however, their function in TDI-induced sensitization has not been explored. To 

elucidate the kinetics, phenotype, and function of Tregs during TDI sensitization, BALB/c mice 

were dermally exposed (on each ear) to a single application of TDI (0.5–4% v/v) or acetone 

vehicle and endpoints were evaluated via RT-PCR and flow cytometry. The draining lymph node 

(dLN) Treg population expanded significantly 4, 7, and 9 days after single 4% TDI exposure. This 

population was identified using a variety of surface and intracellular markers and was found to be 

phenotypically heterogeneous based on increased expression of markers including CD103, CCR6, 

CTLA4, ICOS, and Neuropilin-1 during TDI sensitization. Tregs isolated from TDI-sensitized 

mice were significantly more suppressive compared with their control counterparts, further 

supporting a functional role for Tregs during TDI sensitization. Last, Tregs were depleted prior to 

TDI sensitization and an intensified sensitization response was observed. Collectively, these data 

indicate that Tregs exhibit a functional role during TDI sensitization. Because the role of Tregs in 

TDI sensitization has not been previously elucidated, these data contribute to the understanding of 

the immunologic mechanisms of chemical induced allergic disease.
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Toluene diisocyanate (TDI) is a low-molecular weight, highly reactive chemical utilized in 

the automobile industry and in the manufacture of polyurethane, foams, paints, and coatings. 

The U.S. Environmental Protection Agency reports that domestic production and 

importation of 2,4- and 2,6-TDI isomers rose above 1 billion pounds in 2006 (NTP, 2011). 

TDI is a potent sensitizer and irritant; repeat dermal and/or inhalation exposure can lead to a 

variety of allergic diseases including asthma, hypersensitivity pneumonitis, rhinitis, and 

contact dermatitis (Anderson and Meade, 2014; Bello et al., 2007; Mapp, 2001) These 

diseases can be disabling and extremely severe, potentially resulting in lifelong illness 

and/or death (Fabbri et al., 1988). TDI is generally classified as primarily a respiratory, Th2-

mediated sensitizer with a Th1 component (Matheson et al., 2005). Although the murine 

local lymph node assay (LLNA) is validated for the identification of chemicals that 

preferentially elicit dermal allergic disease, it is not validated for chemicals that 

preferentially elicit respiratory disease (Anderson et al., 2011). In light of this challenge, 

further mechanistic insight into the role of immunologically relevant cellular subsets (in 

addition to Th1 and Th2), involved in respiratory sensitization may ultimately contribute to 

the development of improved predictive models based on cellular phenotype, secreted 

cytokine expression, or other related parameters. Recent immunological developments such 

as the discovery of novel T cell subsets including Th17, T follicular helper, Th22, Th9, and 

Treg, cells support the potential for the utilization of novel mediators of allergic disease (Liu 

and Wisnewski, 2003).

Classical regulatory T cells (Tregs) (CD4+ CD25+) were initially identified based on their 

suppressive capabilities which contributed to the maintenance of immune tolerance in mice 

(Sakaguchi et al., 1995). Following this discovery, a transcription factor known as forkhead 

box p3 (Foxp3) was identified as the master transcription factor of Tregs, allowing for their 

identification and functional manipulation (Hori et al., 2003). Both naturally occurring Tregs 

(nTregs) that develop in the thymus and inducible Tregs (iTregs) that develop in the periphery 

are involved in the maintenance of immune tolerance. Functionally, Tregs have demonstrated 

a critical role in the development of immune tolerance and can serve as effectors helping to 

prevent overzealous adaptive responses to foreign antigens and allergens (Sojka et al., 2008; 

Yadav et al., 2012). This suppressive function is mediated by a variety of mechanisms 

including, but not limited to, the control of conventional T cell proliferation through the 

inhibition of co-stimulation via cytotoxic T-lymphocyte associated protein 4 (CTLA4) 

expression and/or IL-2 consumption, immunosuppressive cytokine secretion (IL-10 and 

Transforming growth factor β(TGF-β), metabolic interference, and disruption of dendritic 

cell function (Corthay, 2009; Kimber et al., 2012; Sojka et al., 2008).

Although a functional role for Tregs has been suggested in models of chemical-induced 

contact hypersensitivity (Christensen et al., 2015), this cellular subset has not been 

investigated in TDI sensitization. Vanoirbeek et al. (2004) observed suspected immune 

tolerance induced by high dose (3% TDI in acetone-olive oil) dermal sensitization followed 

by intranasal challenge resulting in the absence of airway hyperreactivity, contrasted with 

low dose (0.3% TDI in acetone-olive oil) dermal sensitization resulting in airway 

hyperreactivity following intranasal challenge. Although not explicitly stated in the article, 

this seminal study suggested a role for Tregs in TDI sensitization. The collection of data 
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regarding Tregs and chemical allergy is growing but remains limited. In order to elucidate the 

immunologic mechanisms involved in TDI sensitization, the biological functions of 

pertinent immune cell subsets need to be delineated. It is important to note that although a 

variety of Tregs may be involved in chemical sensitization, this study focuses on classical 

Tregs (CD3+ CD4+ CD25+ Foxp3+) due to their well-documented regulatory potential in a 

variety of disease states, including allergy and asthma (Robinson, 2009), and to the lack of 

data regarding these cells in models of low molecular weight chemical allergy. Here, we 

utilize a murine model of dermal TDI sensitization in order to elucidate the expression 

kinetics, phenotype, and functional role of Tregs during chemical sensitization.

MATERIALS AND METHODS

Mice

Female BALB/c mice (6–8 weeks of age) purchased from Taconic (Germantown, New York) 

were acclimated for 5 days and then randomly assigned to treatment group. Homogenous 

weight distribution was insured across treatment groups. BALB/c mice were selected on the 

basis of their Th2 bias, robust IgE production, and the historical use of these mice in the 

laboratory to investigate chemical sensitization (Anderson et al., 2010). Mice were housed in 

ventilated plastic shoebox cages with hardwood chip bedding at a maximum of 5 animals 

per cage. A NIH-31 modified 6% irradiated rodent diet (Harlan Teklad) and tap water were 

administered ad libitum. Housing facilities were maintained at 68–72°F and 36–57% relative 

humidity, and a 12-h light–dark cycle was maintained. All animal experiments were 

performed in the Association for Assessment and Accreditation of Laboratory Animal Care 

accredited National Institute for Occupational Safety and Health animal facility in 

accordance with an Institutional Animal Care and Use Committee-approved protocol.

TDI sensitization model

Toluene 2,4-diisocyanate (TDI, CAS no. 584-84-9) was purchased from Sigma-Aldrich 

Chemical Company (Milwaukee, Wisconsin). Animals (n = 4–5) were exposed to a single 

dose of 0.5–4% TDI (v/v) on the dorsal surface of each ear (25 μl per ear). The highest 

concentration (4% v/v; the maximum sensitizing concentration with minimal toxicity) and 

dosing regimen was previously shown to induce sensitization (Anderson et al., 2013) and 

sensitization was confirmed in the lower dose based on total serum IgE levels and dLN 

allergic cytokine mRNA expression (0.5% v/v; data not shown). Acetone was selected as the 

vehicle control to minimize chemical reactivity as diisocyanates react with OH groups which 

are present in other potential vehicles such as olive oil. Ear thickness was measured 4 days 

following TDI exposure using a modified engineer's micrometer (Mitutoyo Corporation, 

Japan) and measurements were collected in millimeters (mm). Average ear swelling was 

calculated as previously described in Anderson et al. (2012). Mice were euthanized via CO2 

asphyxiation at time points ranging from 1 to 11 days postchemical exposure.

Euthanasia, tissue collection, and processing

Animals were weighed, euthanized via CO2 asphyxiation, and examined for gross pathology 

at the designated time point. Left and right auricular draining lymph nodes (dLNs; drain site 

of chemical application) were collected in sterile phosphate-buffered saline (pH 7.4) and 
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manually dissociated using the frosted ends of 2 microscope slides. dLN cellularity was 

determined using a Cellometer (Nexcelom Bioscience, Lawrence, Massa chusetts) with size 

exclusion parameters (3.5–36 μm) and a combined Acridine Orange/Propidium Iodide 

solution to identify viable cells. Blood was collected via cardiac puncture, placed into serum 

collection tubes, centrifuged, and serum was removed and stored at −80°C for subsequent 

total IgE analysis via ELISA. Ears were collected in 1 mL RNALater (Ambion, Pittsburgh, 

Pennsylvania), stored at −80°C for subsequent gene expression analysis.

RNA isolation and reverse transcription

Ears were processed for RNA isolation using a Tissue Lyser II in Qiagen lysis buffer. Total 

RNA was isolated from the ears and dLN using the Qiagen RNeasy and miRNeasy kits, 

respectively. A QiaCube (Qiagen, Hilden, Germany) automated RNA isolation machine was 

utilized in conjunction with the specified RNA isolation kits. A DNase treatment was 

performed for removal of residual DNA. The concentration and purity of the RNA was 

determined using a ND-1000 spectrophotometer (Thermo Scientific Nanodrop, Wilmington, 

Delaware). First strand cDNA synthesis was performed using a High-Capacity cDNA 

Synthesis Kit (Applied Biosystems, Carlsbad, California) according to manufacturer 

recommendations. Ultimately, the cDNA was analyzed for mRNA expression as described in 

the real-time PCR (RT-PCR) methods section below.

Real-Time PCR

For analysis of mRNA expression, TaqMan Universal Fast master mix (Applied Biosystems, 

Calsbad, California), cDNA, and mouse-specific mRNA primers (TaqMan Custom PCR 

Arrays, Carlsbad, California) were combined and PCR was performed according to 

manufacturer protocol. Primers used include: il-1β, il-6, and tnf-α. Master mix, primers, and 

cDNA were added to a MicroAmp Fast Optical 96-well reaction plate and analyzed on an 

Applied Biosystems 7500 Fast RT PCR system using cycling conditions as specified by the 

manufacturer. β-actin was used as the endogenous reference control gene as expression was 

determined to be stable following chemical exposure (data not shown). RT-PCR data were 

collected and represented as relative fold change over vehicle control, calculated by the 

following formula: 2−ΔΔCt = ΔCtSample – ΔCtControl. ΔCt = CtTarget – Ctβ-ACTIN, where Ct = 

cycle threshold.

Flow cytometric analysis

Single cell suspensions were prepared from tissues and a minimum of 150 000 dLN cells 

were aliquoted into 96-well U-bottom plates and washed in staining buffer (PBS + 1% 

bovine serum albumin + 0.1% sodium azide). Cells were resuspended in staining buffer 

containing anti-mouse CD16/32 antibody (clone 2.4G2; BD Biosciences, San Jose, 

California) for blocking of Fc receptors to minimize nonspecific binding. Cells were 

resuspended in staining buffer containing a cocktail of fluorochrome-conjugated antibodies 

specific for cell surface antigens including: CCR6 (clone: 29-2L17, fluorophore: BV605, 

BioLegend), CD3 (500A2, V500, BD), CD4 (RM4-5, AF700, BD), CD8a (53-6.7, AF488, 

BioLegend), CD25 (PC61, APC Cy7, BioLegend), CD45 (30-F11, PE, BD), CD103 (2E7, 

PerCP Cy5.5, BioLegend), Inducible T-cell costimulator (ICOS) (C938.4A, PE Cy7, 

eBioscience), Neu-1 (3E12, PE, BioLegend), and Ter-119 (TER-119, FITC, eBioscience).
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Following surface staining, cells were washed in staining buffer and fixed using the Foxp3 

fixation buffer set (eBioscience, San Diego, California). After overnight incubation in 

staining buffer, cells were permeablilized using the Foxp3 fixation buffer set (eBioscience, 

San Diego, Calfornia) and re-suspended in permeabilization buffer containing a cocktail of 

fluorochrome-conjugated antibodies specific for intracellular antigens including: CTLA4 

(UC10-4B9, BV421, BioLegend), Foxp3 (FLK-16s, eF450, and APC, eBioscience), Gata3 

(TWAJ, eF660, eBioscience), Rorγt (Q31-378, PerCP Cy5.5, eBioscience), and Tbet (4B10, 

PE Cy7, eBioscience). Following staining, cells were re-suspended in staining buffer and 

analyzed on an LSR II flow cytometer using FacsDiva software (BD Biosciences). Data 

analysis was performed with FlowJo 10.0 software (TreeStar Inc., Ashland, Oregon). A 

minimum of 10 000 events were captured for each sample. Leukocytes were first identified 

by their expression of CD45. The Treg subset was further identified as CD3+ CD4+ CD8− 

CD25+ Foxp3+. Numerical population values were calculated by applying subset 

frequencies to the initial cell count obtained following lymph node homogenization. 

Compensation controls were performed using single stained cellular suspensions and 

OneComp beads (eBioscience, San Diego, California) and fluorescence minus one staining 

controls were included to help set gating boundaries.

Treg suppression assay

The suppressive ability of Tregs was analyzed using an ex vivo Treg suppression assay as 

described by Kruisbeek et al. (2001) and Marshall et al. (2008) with some modifications. 

This assay evaluates the ability of naïve, conventional dLN-derived T cells (Tcons) to 

proliferate in the presence of varying numbers of Tregs isolated from acetone- or TDI-

exposed mice. Mice were exposed to acetone (n = 7–11) or TDI (4%) (n = 4–5) as 

previously described and following sacrifice at 4 and 7 days postTDI (peak of the expansion) 

exposure the dLN and spleens were removed. Tregs (CD4+ CD25+) and Tcons (CD4+ CD25−) 

were isolated from the lymph nodes and CD4− accessory cells were isolated from naïve 

spleens using CD4 negative and CD25 positive selection-based magnetic separation kits 

(Stemcell, Vancouver, British of Columbia). Average Treg purity is as follows for 4 days: 

Acetone-70.65% of CD3+ CD4+ cells and 4% TDI-63.05% of CD3+ CD4+ cells and 7 days: 

Acetone-91.35% of CD3+ CD4+ cells and 4% TDI-82.8% of CD3+ CD4+ cells post 4% TDI 

exposure. Following isolation from naïve mouse dLNs, Tcons were labeled with 2 μM 

carboxyfluorescein succinimidyl ester (CFSE). Tcons and Tregs were cultured in a 96-well U-

bottom plate with anti-CD3 (0.2 μg/ml; BD Biosciences) and accessory cells at a variety of 

Tcon:Treg ratios (1:1, 2:1, 4:1, and 8:1). Naïve CD4− splenocytes were treated with 

Mitomycin C (Sigma Aldrich, St Louis, Missouri) and utilized as accessory cells. Additional 

controls included stimulated Tcons only to assess baseline proliferation, Tregs only, accessory 

cells only, and Tcons only with no stimulation nor accessory cells. Cells from each treatment 

group were pooled and added to triplicate wells of the culture plate. Seventy-two hours 

following plating, cells were stained with anti-CD4 and Live/Dead Violet (Life 

Technologies, Carlsbad, California). Tcons were defined as CD4+ CFSE+ cells and 

suppression was measured based on changes in the frequency of dividing CFSE+ cells based 

on the dilution of CFSE. Tregs were analyzed for purity based on their expression of CD3, 

CD4, and Foxp3 as determined by flow cytometric analysis as previously described.
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In vivo anti-CD25 antibody treatment

In order to deplete Tregs before and during TDI sensitization, InvivoMAb anti m CD25 

(BioXCell, PC-61.5.3) was administered in vivo. The use of this antibody as a Treg depletion 

strategy is validated in vivo (Felonato et al., 2012; Setiady et al., 2010). InVivoMAb Rat 

IgG1 (Bioxcell, HRPN) was utilized as a negative, isotype control. Treatment groups for this 

study (n = 5 mice) are as follows: isotype/acetone, isotype/0.5% TDI, isotype/2% TDI, 

antiCD25/acetone, antiCD25/0.5% TDI, and antiCD25/2% TDI. 200 μg of the respective 

antibody in USP grade saline was administered intraperitoneally at days −11 and −8 during 

the depletion study (see Figure 6A for study timeline). Animal weights were recorded 

throughout the duration of the experiment to monitor potential toxicity. In order to confirm 

the effectiveness of the antibody, blood was collected from the lateral tail vein at days 2 and 

7, and Tregs were measured by flow cytometry as previously described. Baseline blood Treg 

levels were assayed at day 12 to ensure equal pretreatment frequencies across all groups. 

Mice were exposed to a single dermal application of 0.5 or 2% TDI on day 0. The high dose 

of 2% TDI was selected in an effort to allow for a measurable increase in the sensitization 

response, as 4% TDI elicits a maximum sensitization response. Mice were euthanized 7 days 

following dermal chemical exposure. Specific measures of sensitization were evaluated, 

including examination of the Th2 population by flow cytometry (CD3+ CD4+ Gata3+), IL-4 

dLN mRNA levels by RT-PCR, and total IgE levels in the serum. Total serum IgE was 

quantified following serum separation from whole blood (centrifugation) and analysis using 

a Mouse IgE Ready-SET-Go! Kit (Affymetrix eBioscience, San Diego, Califorrnia) 

according to the manufacturer's protocol. Absorbance was determined using a Spectramax 

Vmax plate reader (Molecular Devices, Sunnyvale, California) at 450 and 650 nm. Data 

analysis was performed using the IBM Softmax Pro 3.1 program (Molecular Devices, 

Sunnyvale, California) and the IgE concentrations for each sample were interpolated from a 

standard curve derived from multipoint analysis.

Statistical analysis

Statistical analyses were generated using SAS/STAT software, version 9.3 (SAS Institute, 

Cary, North Carolina) and GraphPad Prism version 5.0 (San Diego, California). For irritancy 

and inflammatory gene expression analysis (Figure 1), a 1-way analysis of variance 

(ANOVA) was conducted. If the ANOVA showed significance at P < .05 or less, the 

Dunnett's Multiple Comparison Test was used to compare values from groups of mice 

treated with varying concentrations of TDI to the acetone control group. Figures 2–6 and 

Table 2 were analyzed by analysis of variance using PROC MIXED. In some cases, data 

were transformed using the natural log to meet the assumptions of the analysis. Significant 

interactions were explored utilizing the ‘slice’ option in PROC MIXED and pairwise 

differences were assessed using a Fishers Least Significant Difference Test. Supplemental 

data was analyzed by a Student t-test comparing groups as indicated in the figure legends. 

All differences were considered significant at P < .05; representative significance symbols 

varied by figure, as indicated in the figure legend.
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RESULTS

Examination of Sensitization and Skin Irritancy Potential of TDI

To confirm that a single dose exposure to TDI (0.5 and 4%) would sensitize animals, total 

serum IgE was evaluated following TDI exposure. Although not initially statistically 

significant, IgE levels appeared to increase in a dose-dependent manner, reaching 

significance following 4% exposure (Figure 1A). Because TDI is a known irritant (Daftarian 

et al., 2002), the selected doses of TDI (0.5–4% v/v) were assayed for dermal irritancy 

potential via ear swelling measurements and ear inflammatory cytokine mRNA production 

quantified via RT-PCR. Average ear swelling was significantly increased four days following 

2 and 4% TDI exposure (Figure 1B); however, neither 0.5 nor 1% TDI exposure induced 

significant increases in ear swelling (Figure 1B). Inflammatory cytokine (IL-1β, IL-6, and 

TNF-α) mRNA levels were significantly increased in the ear four days following 4% TDI 

exposure (Figs. 1C–E). These data suggest that 2 and 4% TDI exposure induce a significant 

irritation response in the ear compared with 0.5 and 1% TDI exposure. Based on this data, 

0.5 and 4% TDI were selected as the exposure concentrations in subsequent studies to 

represent sensitizing concentrations that encompassed both a low dose exhibiting a lack of 

irritation (0.5%) along with a high dose exhibiting significant irritation (4%).

dLN Treg Expression Kinetics Reveal an Expansion of This Population During TDI 
Sensitization

In order to profile the expression kinetics of the Treg subset during TDI sensitization we 

examined dLN cell populations at 1, 2, 4, 7, and 9 days postTDI exposure. Tregs were 

identified as CD3+ CD4+ CD25+ Foxp3+ cells by flow cytometry (Figure 2A). The 

frequency of Tregs was unchanged compared with control cells from acetone-treated mice 

during 0.5% TDI sensitization; however, Treg frequency increased significantly at 4, 7, and 9 

days post 4% TDI exposure (Figure 2B). Tregs also significantly increased in number at all 

time points analyzed during 0.5 and 4% TDI sensitization (Figure 2C). The peak numbers of 

Tregs in the dLN appeared to occur at day 4 post TDI exposure for both concentrations 

(mean ± SEM; 1.17 × 106 cells ± 0.08 (0.5%) and 1.7 × 106 cells ± 0.08 (4%)) compared 

with the acetone control (0.18 × 106 cells ± 0.02). The Treg population remained elevated 

compared with the acetone control, but began to retract at days 7 (0.5% TDI- 0.88× 

106±0.09, and 4% TDI- 1.39 × 106±0.1) and 9 (0.5% TDI- 0.37 × 106±0.06, and 4% TDI- 

0.79 × 106±0.05) following TDI exposure relative to their peak at day 4.

In order to better elucidate the origin of the Tregs involved in the TDI sensitization response, 

natural Tregs (nTregs) were identified based on their expression of neuropilin-1. Interestingly, 

the frequency of the nTreg subset as a percentage of total Tregs significantly decreased at 7 

and 9 days during 0.5% and 4% TDI sensitization (Figure 3C). Although the frequency of 

this subset decreased in relation to the acetone control group, the numbers of nTregs in the 

dLN increased during 0.5 and 4% TDI sensitization (Figure 3D). This increase was 

significant for 4–9 days during 0.5% TDI sensitization and at all time points measured 

during 4% TDI sensitization. It is important to note that both the nTreg and the 

neuropilin-1neg Treg population (presumably induced Tregs [iTregs]) were represented as co-

expressing populations examined using additional markers.dLN Treg subsets were further 
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phenotyped by flow cytometry (Table 1). The phenotyping analysis revealed a number of 

Treg subpopulations that exhibited the potential to be functionally diverse in relation to their 

mechanism(s) of suppression (Table 1 and Supplementary Figure 1). An expansion in the 

frequency and number of the CTLA-4+Treg population was observed at all measured time 

points following both 0.5 and 4% TDI exposure (Figs. 3A and B). This population peaked in 

expression of both frequency (Figure 3A) and number (Figure 3B) at day 4 post TDI 

exposure. The emergence of the CTLA4+Treg population during TDI sensitization suggests 

the engagement of CTLA-4, a negative costimulatory molecule, as a potential suppressive 

mechanism during this response. As expected, presumably due to compensatory 

mechanisms during T cell activation, there was also an increase in CTLA4 expression in 

CD4+non-Tregs; however, at the peak of expression (4 days) the mean frequency of 

expression among all CD4+ cells was 0.54% ± 0.024 for acetone, 4.6% ± 0.24 for 0.5% TDI, 

and 7.85% ± 0.66 for 4% TDI groups. When compared with the Tregs expressing CTLA4 at 

the same time point, these numbers reveal a sizably smaller frequency of nonTregs 

expressing this marker, emphasizing the specificity of this marker to the Treg population 

during this response.

In addition to the CTLA4+Tregs and nTregs, cells expressing the homing molecules CD103, 

CCR6, and ICOS were analyzed during TDI sensitization. Treg expression of CD103, CCR6, 

and ICOS increased in both frequency and number throughout 0.5 and 4% TDI sensitization 

(Table 2). The CCR6+ population's expression frequency was highest at 7 days postTDI 

exposure, while the CD103+ and ICOS+ populations’ frequency peaked at 4 days 

postexposure. It is important to note that while there are significant changes in these subsets, 

they represent a small portion of the total CD4+ population, as their expression is presented 

on Tregs, which themselves constitute a minority of the total CD4+ population. Although 

there was robust Treg expression of CD103, CCR6, and ICOS as single markers, there was a 

significant population of dLN Tregs that co-expressed these molecules (Figs. 4A and B) with 

kinetics were similar to those exhibited by each single marker. This population likely 

represents a migratory subset of effector Tregs that have been activated during TDI 

sensitization. This co-expressing population expanded in the dLN in both number and 

percent during TDI sensitization and represented 6.34% ± 1.2 of Tregs following acetone 

exposure, 12.82% ± 1.2 of Tregs during 0.5% TDI sensitization and 20.7% ± 1.8 of Tregs 

during 4% TDI sensitization at 7 days postexposure (peak expression).

Tregs Have Potent Suppressive Ability During TDI Sensitization

Because the Treg population expanded during TDI sensitization, the functional role of Tregs 

was further examined by performing a CFSE-based Treg suppression assay with Tregs 

isolated from acetone or TDI-treated mice (Figure 5A). Tregs from acetone-treated mice 

were significantly suppressive at all Tcon:Treg ratios tested when isolated at 4 (Figure 5B) 

and 7 days (Figure 5C) postexposure. Acetone Treg-induced suppression was found to be 

equivalent to naïve-derived Treg-induced suppression (data not shown). Tregs from TDI-

exposed mice exhibited increased suppressive ability compared with the acetone controls 

when isolated at both 4 (Figure 5B) and 7 days (Figure 5C) at all Tcon:Treg ratios tested. The 

heightened suppressive ability of Tregs was surprising, given the progression of sensitization 
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at the selected concentrations of TDI. This data suggested a functional, suppressive role for 

Tregs in TDI sensitization.

Depletion of Tregs Before and During TDI Sensitization Augments the T cell-Mediated 
Allergic Response

In order to analyze the functional potential of Tregs in vivo during TDI sensitization, this 

subset was depleted by injecting mice with anti-CD25 antibody days 11 and 8 prior to TDI 

exposure (Figure 6A). The high dose of 2% TDI was selected in an effort to allow for a 

measurable increase in the sensitization response, as 4% TDI elicits a maximum 

sensitization response. The basal levels of Tregs in the blood of mice were determined to be 

comparable among all groups prior to dosing (Supplementary Figure 2A) and depletion was 

confirmed in the blood (Sup 2A) at days −2 and 7 and in the dLN (Supplementary Figure 

2B) at day 7. Mice dosed with 2% TDI that received anti-CD25 lost significantly more body 

weight (grams; mean decrease 5.33% 6 3.9) than mice exposed to 2% TDI and isotype 

control antibody (mean increase 1.01% ± 4.3), suggesting enhanced toxicity following Treg 

depletion and high-dose TDI administration. Because local irritation is thought to influence 

allergic sensitization (Pauluhn, 2014) and TDI is a known irritant (Duprat et al., 1976), we 

analyzed the dermal irritation response at the site of TDI exposure by ear swelling 

measurements following Treg depletion. As expected, there was a dose-responsive increase 

(Linear trend test P < .01) in ear swelling following exposure to TDI for both the isotype 

control and anti-CD25 groups (Figure 6B). Although not statistically significant, ears from 

animals treated with anti-CD25 and either concentration of TDI exhibited increased swelling 

(12.4% ± 3.7 for 0.5%; 54.4% ± 10.7 for 2% TDI) compared with their isotype-treated 

counterparts (1.4% ± 6.6 for 0.5%; 35.6% ± 8.9 for 2% TDI). At day 7, dLN cellularity 

increased dose-responsively (Linear trend test P < .05) for both the isotype control and 

antiCD25-treated groups during TDI sensitization (Figure 6C). For both the 0.5 and 2% 

TDI-treated groups statistically significant increases in the dLN cellularity with anti-CD25 

treatment compared with isotype were observed. Another effector CD4+T cell subset, Th2, 

which play an important role in allergic responses, was identified by GATA-3 expression and 

was found to dose-responsively expand in number during 0.5 and 2% TDI sensitization for 

both the isotype and anti-CD25-treated groups (Figure 6D; Linear trend test P < .01). When 

comparisons were made between the isotype control and anti-CD25 treated groups this 

population appeared to further expand during TDI sensitization, although these perceived 

trends were not statistically significant. Similar observations were made for the Th2 

population's frequency (data not shown). IL-4 mRNA expression levels increased dose-

responsively in the dLN following 0.5 and 2% TDI exposure (Linear trend test P < .05; 

isotype and anti-CD25 groups) and were significantly augmented in groups treated with anti-

CD25 compared with isotype-treated controls (Figure 6E). Similarly, dose-responsive 

increases in total IgE levels in the blood appeared to occur at 7 days following exposure to 

TDI in mice treated with both isotype control and anti-CD25, although significance was only 

observed for the 2% TDI anti-CD25-treated group (Linear trend test P < .01; Figure 6F). 

Statistically significant increases in serum IgE levels were observed after anti-CD25 

treatment following exposure to 0.5 and 2% TDI.
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Other T cell-related dLN phenotyping was performed at day 7 including CD3, CD4, and 

CD8 expression, along with other effector CD4+Th1 and Th17 populations based on their 

expression of Tbet and Rorγt, respectively (Supplementary Figure 3). CD3+, CD3+ CD4+, 

CD3+ CD8+, Th1, and Th17 cells dose-responsively expanded in number during 0.5 and 2% 

TDI sensitization and antiCD25 depleted animals exhibited higher numbers of cells during 

TDI sensitization (Supplementary Figs. 3B, D, F, H, J). dLN CD3+ cellular frequency 

decreased in isotype and antiCD25-treated groups during 0.5 and 2% TDI sensitization 

compared with their respective acetone control (Supplementary Figure 3A). Interestingly, 

CD3+ cellular frequency was significantly increased in groups treated with anti-CD25 

compared with isotype controls for acetone and 0.5% TDI, indicating that antiCD25 

treatment did not affect general T cell frequencies in the dLN. CD4+ and CD8+T cell 

frequency (as a percentage of CD3+ cells) remained stable during TDI sensitization; 

however, the CD4+ frequency decreased following anti-CD25 treatment while the CD8+ 

frequency increased (Supplementary Figs.3C and E). The Th1 dLN population significantly 

expanded in frequency during TDI sensitization (Supplementary Figure 3C). This subset 

further expanded in mice treated with antiCD25 in frequency (2%) compared with the 

isotype control groups. The Th17 subset was also profiled and was not significantly altered 

in frequency during TDI sensitization in the isotype control treated groups; however, the 

frequency of Th17 cells was significantly increased above both the corresponding acetone 

and isotype-treated control groups during 2% TDI sensitization following anti-CD25 

treatment (Supplementary Figure 3D).

DISCUSSION

Occupational exposure to sensitizing chemicals that are capable of inducing allergic disease 

is increasing globally and is an important public health concern. Although there continues to 

be progress made in the area of hazard identification, the limited knowledge of the 

immunologic mechanisms of sensitization induced by respiratory sensitizers such as TDI 

continues to complicate the development of these assays. Novel molecules and mechanisms 

involved in allergic disease need to be investigated in order to elucidate specific entities that 

can be utilized for the development of hazard identification assays for respiratory sensitizers. 

Due to the recognized role of Tregs in related allergic disease states, we chose to investigate 

the expression kinetics, phenotype, and functional capability of Tregs in a murine model of 

dermal TDI sensitization. To our knowledge, this is the first study that investigates the 

expression and functionality of Tregs in Th2-mediated chemical sensitization.

Treg involvement has been suggested in the prevention of the development of allergic disease 

in both mouse and human models of allergy, specifically impacting Th2-related responses 

(Robinson et al., 2004). Murine CD4+ CD25+ T cells can prevent the transition of naïve 

CD4+T cells to Th2 cells in vitro (Stassen et al., 2004). In a model of house dust mite 

antigen-induced airway inflammation decreased airway pathology and ex vivo-derived 

splenic IL-4 and IL-13 levels were observed following Treg adoptive transfer (Chen et al., 
2003). Additionally, Tregs have been implicated in vivo-induced tolerance following inhaled 

ovalbumin exposure (Ostroukhova et al., 2004), highlighting the importance of these cells in 

the prevention of allergic disease. Supporting human studies have demonstrated the 

expansion of Tregs in the nasal mucosa following allergen immunotherapy and noted their 
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association with the efficacy of treatment, suggesting a role for Tregs in the development of 

antigen-specific tolerance in allergic humans (Radulovic et al., 2008). In addition to their 

direct actions on Th2 cells, Tregs have also demonstrated the ability to suppress allergic 

disease by influencing granulocytes, antibody-producing B cells, and resident tissue cells 

(Palomares et al., 2010). In addition, Tregs have demonstrated involvement in maintaining 

tolerance and controlling the allergic response during the sensitization phase of both 

ovalbumin-induced allergic airway inflammation (Baru et al., 2010) and hapten-induced 

CD8+T cell-dependent contact hypersensitivity response (Christensen et al., 2015).

In an effort to explore the role of Tregs in TDI sensitization, this population was profiled 

following epicutaneous TDI exposure. Several basic Treg markers (CD3/CD4/CD25/Foxp3) 

were used to define the classical Treg population but it is important to note that some Treg 

subsets do not express CD25 and/or Foxp3 such as Tr1 (Passerini et al., 2011) and Th3 

(Carrier et al., 2007) cells which typically exhibit TGF-β and IL-10-mediated suppression. 

Due to the use of CD25 as a functional tool in these studies, we have chosen to focus on 

classical Tregs. The basic Treg population encompasses numerous subpopulations including, 

but not limited to, nTregs, iTregs, migratory and homing Tregs, and IL-10 secreting Tregs. 

Beyond the nTregs and iTregs, these subsets are not mutually exclusive, so while phenotyping 

markers may be presented alone, many of these populations are co-expressers of a variety of 

markers. In general, the Treg populations (basic and specialized; Table 1) were identified to 

expand in both number and frequency, peaking around 4–7 days and beginning to retract 

around 7–9 days following TDI exposure. This retraction may be due to the early 

importance of this population in the dLN or may also be mediated by other compensatory or 

regulatory elements. Interestingly, the general Treg population's frequency did not 

significantly increase following 0.5% TDI exposure (Figure 2B), potentially implicating a 

role for the irritant response in both the induction of Tregs and as a precursor to the initiation 

of sensitization.

Further support for a role for Tregs in TDI sensitization was identified following in vivo 
administration of anti-CD25 treatment. In this Treg depletion study, augmentations in 

traditional Th2 allergic markers (dermal irritation, dLN cellularity, Th2 population, IL-4 

mRNA expression, and serum total IgE production) were observed. Dose-responsive 

increases in dLN cellularity, IL4, Th2 cells, and IgE were also observed and were further 

augmented following antiCD25 treatment indicating increased sensitization in the absence of 

Tregs. dLN cellularity was measured as a gross marker of sensitization intensity, as this 

parameter is traditionally utilized in the standard sensitization assay known as the LLNA 

(Anderson et al., 2011). The dLN Th2 cellular subset was examined as the main effector T 

cell subset traditionally thought to be involved in allergic responses, with the allergic 

cytokine IL-4 being primarily produced by this subset, influencing the development and 

homeostasis of the allergic microenvironment (Brown, 2008). IgE expression indicates the 

development of an allergic humoral response. Although Treg depletion was identified to 

promote a Th2 response, the findings from the Treg suppression assay suggested that Tregs 

isolated from the TDI-sensitized animals were more suppressive compared with their 

acetone counterparts. These data suggest a significant role for Tregs in the regulation of 

chemical-induced allergy, implying that their presence may delay or reduce the intensity of 

sensitization.
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Typically, the development of allergic disease is thought to involve an imbalance between 

Th1 and Th2 responses to allergens (Akdis et al., 2004), resulting in an ‘overzealous’ Th2 

response. Although the Th2 response is an important mediator of TDI sensitization, it is 

important to note that TDI sensitization and resultant allergic disease also contain Th1 and 

Th17 components (Supplementary Figs. 3G–J) (Liu and Wisnewski, 2003). Tregs are capable 

of suppressing both Th1 (Xu et al., 2012) and Th17 (Jaffar et al., 2009)-mediated responses, 

indicating that they may be influencing these components of the TDI sensitization response. 

Selective suppression of the Th1 response during TDI sensitization could further enhance 

the development of Th2-mediated sensitization based on the Th1/Th2 imbalance hypothesis.

Although Tregs isolated from TDI sensitized mice were identified to be more suppressive 

than acetone-derived Tregs, this was reported based as a combined function for all 

populations of Tregs. This is important to note because TDI-induced Tregs were identified to 

be phenotypically heterogeneous. Although the kinetics of the specialized Treg populations 

generally mimic that of the basic Treg population several discrepancies were identified that 

may provide insight into the mechanisms driving this response. The CTLA4+Treg population 

was identified to increase in number and frequency earlier than the general Treg population 

with significant increases identified one day post exposure. The early expansion of this 

subset was intriguing, given the lack of any data implying a role for CTLA4-mediated 

suppression in chemical-induced allergy, although this population has been noted to play an 

immunosuppressive role in the sensitization phase of the ovalbumin-induced allergic 

response (Hellings et al., 2002). This population participates in contact-mediated 

suppression by binding to the B7 costimulatory complex expressed on APCs, thus inhibiting 

T cell activation in a highly suppressive manner (Tai et al., 2012). Based on the early 

expansion of this subset, it is possible that these cells are interacting with APCs in the early 

phase of the sensitization response. nTregs are thymus-derived cells whose counterparts are 

iTregs generated in the periphery; nTregs are identified by neuropilin-1 expression (Weiss et 
al., 2012; Yadav et al., 2012). Interestingly, the nTreg frequency significantly decreased 

between 7 and 9 days following TDI exposure compared with the acetone-treated 

population. This decrease may be attributed to the efflux of cells from the dLN into 

peripheral tissues and/or the influx and expansion of iTregs in the dLN. Because certain 

populations of Tregs are known to possess migratory capabilities, the Treg phenotyping panel 

included several markers associated with Treg migration and effector capabilities including 

CCR6, CD103, and ICOS. Tregs expressing any or all of these markers were defined as 

migratory effector Tregs due to the noted homing capabilities and the effector functions 

(Chang et al., 2012; Kleinewietfeld et al., 2005; Matsushima and Takashima, 2010; 

Vocanson et al., 2010; Yamazaki et al., 2008). The expansion of Tregs expressing CCR6, 

CD103, and/or ICOS may represent subsets that have acquired effector functions, such as 

IL-10 production, and possess migratory capabilities. Taken together, these findings suggest 

that Tregs likely utilize a variety of suppressive mechanisms as indicated by their phenotypic 

diversity. This could be a potential explanation for why TDI sensitized Tregs were identified 

as more suppressive than their acetone control counterparts.

These studies reveal an important role for Tregs in a murine model of TDI sensitization. 

Elucidation of the role of Tregs in this response will result in a better understanding of the 

immunologic mechanisms involved chemical sensitization. Due to the complexity of 
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mechanisms involved in chemical allergy, the investigation of novel cellular subsets and 

mediators of allergic disease is imperative for the greater understanding of these conditions 

and the development of hazard identification strategies for respiratory chemical sensitizers. 

In conclusion, we have demonstrated that Tregs are a phenotypically heterogeneous 

population that expand, suppress, and play a part in controlling the allergic response during 

TDI sensitization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Confirmation of sensitization and evaluation of skin irritancy following dermal TDI 

exposure. ELISA analysis of total serum IgE levels 11 days following single TDI exposure 

at the indicated concentration (A). Percent change in ear thickness as determined 4 days 

following TDI exposure (B). Ear mRNA expression of the inflammatory cytokines il-1β (C), 
il-6 (D), and tnf-α (E) as determined 4 days following TDI exposure via RT-PCR. Bars 

represent mean (± SE) of 4–5 mice per group. Statistical significance is indicated by (*) at a 

P-value < .05 and (**) at a P-value < .01.
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FIG. 2. 
Treg subset expands during dermal TDI sensitization. Flow cytometric analysis of Tregs 

following dermal TDI sensitization (A) Tregs were first gated on their expression of CD3 and 

CD4, then were further identified by CD25 and Foxp3 expression at indicated time points. 

dLN Treg frequency (B) and number (C) were determined based on flow cytometry analysis 

and extrapolation of this data with total dLN cellularity. Graph symbols represent mean (± 

SE) of 5 mice per group. P-values are represented by (0.5% TDI) and asterisks (4% TDI) (P 
< .05). Significance is indicated as follows: P ≤ .05 (*), P ≤ .01 (**), P ≤ .001 (***), and P 
≤ .0001 (****) for 4% TDI or P ≤ .05 (^), P ≤ .01 ( ), P ≤ .001 (^), and P ≤ .0001 ( ) 

for 0.5% TDI. Dermal treatment groups are indicated by the following symbols: circle, 

acetone; square, 0.5% TDI; and triangle, 4% TDI.
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FIG. 3. 
Expansion of CTLA4+ and nTreg populations during TDI sensitization. Flow cytometric 

analysis of dLN CTLA4+ Treg frequency (A) and number (B) and nTreg (Neuropilin-1+) 

frequency (C) and number (D) following TDI sensitization. Bars represent mean (± SE) of 5 

mice per group. P values are represented by (0.5% TDI) and asterisks (4% TDI) (P < 0.05). 

Significance is indicated as follows: P ≤ .05 (*), P < .01 (**), P ≤ .001 (***), and P ≤ .0001 

(****) for 4% TDI or P ≤ .05 (^), P ≤ .01 ( ), P ≤ .001 ( ), and P ≤ .0001 ( ) 

for 0.5% TDI. Dermal treatment groups are indicated by the following symbols: circle, 

acetone; square, 0.5% TDI; and triangle, 4% TDI.
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FIG. 4. 
dLN migratory effector Treg population expands during TDI sensitization (co-expression). 

dLN CCR6+ CD103+ ICOS+ Treg frequency (A) and number (B) were determined based on 

flow cytometry analysis and extrapolation of this data with total dLN cellularity. Bars 

represent mean (± SE) of 5 mice per group. P values are represented by (0.5% TDI) and 

asterisks (4% TDI) (P < .05). Significance is indicated as follows: P ≤ .05 (*), P ≤ .01 (**), P 
≤ .001 (***), and P ≤ .0001 (****) for 4% TDI or P ≤ .05 (^), P ≤ .01 ( ), P ≤ .001 (^), 

and P ≤ .0001 ( ) for 0.5% TDI. Dermal treatment groups are indicated by the 

following symbols: circle, acetone; square, 0.5% TDI; and triangle, 4% TDI.
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FIG. 5. 
Treg suppression assay reveals increased suppressive ability of Tregs during TDI 

sensitization. A CFSE-based Treg suppression assay was performed and percent dividing 

CFSE+ cells were quantified as illustrated in (A). The zero peak represents the cell 

population that retained all original CFSE stain. The percent dividing CFSE+ cells (Tcons) 

are represented in combination with Tregs from mice 4 (B) and 7 (C) days following TDI 

exposure at a variety of Tcon:Treg ratios. For (B) and (C) 3 plate replicates were utilized from 

groups of 4–11 mice, as described in the ‘Materials and Methods’ section. Significance is 

indicated as follows: P ≤ .05 (*), P ≤ .01 (**), P ≤ .001 (***), and P ≤ .0001 (****). P values 

are represented by asterisks (comparison of each treatment group to Tcon only from the same 
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chemical treatment group) or horizontal bars with asterisks above (comparison of identical 

ratios between different chemical treatment groups).
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FIG. 6. 
The severity of the sensitization response is intensified in the absence of Tregs during TDI 

sensitization. Tregs were depleted in mice prior to and during dermal TDI sensitization (A). 
Evaluation of dermal irritancy (B), dLN cellularity (C), dLN Th2 population (D), dLN IL-4 

gene expression (E), and serum total IgE (F) were evaluated following a single exposure of 

0.5 or 2% TDI with isotype control or anti-CD25. Bars represent mean (± SE) of 5 mice per 

group. Significance is indicated as follows: P ≤ .05 (*), P ≤ .01 (**), P ≤ .001 (***), and P 
≤ .0001 (****). P values are represented by asterisks (comparison of acetone to TDI-
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exposed group from the same antibody treatment regimen) or horizontal bars with asterisks 

above (comparison of antibody and isotype-treated groups receiving identical chemical 

treatment).
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TABLE 1

Treg Flow Cytometry Phenotyping Marker Guide

Marker Abbreviation Surface or 
Intracellular 
Detection

Significance T Cell Populations 
Expressing

Cluster of differentiation 3 CD3 S Pan T cell marker All T cells

Cluster of differentiation 4 CD4 S CD4+ T cell marker CD4+ T cells

Cluster of differentiation 25/
IL2rα

CD25 S High affinity IL-2 receptor α, T 
and B cell growth factor (via IL-2 
binding) (Fontenot et al., 2005; 
Lowenthal et al., 1985)

Tregs, some activated T cells 
(non-Tregs)

Forkhead box protein 3 Foxp3 IC Master Treg transcription factor 
(Hori et al., 2003)

Tregs

Chemokine (CC-motif) receptor 6 CCR6 S Lymphocyte chemoattractant 
CCL20 is its ligand (Schutyser et 
al., 2003)

Migratory Effector Tregs 

(Kleinewietfeld, et al., 2005; 
Yamazaki et al., 2008) and 
CD8+ T cells (Kondo et al., 
2007)

Cluster of differentiation 103 CD103 S Integrin involved in epithelial T 
cell migration and retention (Anz 
et al., 2011)

Migratory Effector Tregs 

(Matsushima and Takashima, 
2010) and tissue resident CD8+ 

T cells (Mackay et al., 2013)

Cytotoxic T-Lymphocyte-
Associated Protein 4

CTLA4/CD152 IC Member of the CD28 family that 
is a potent inhibitor of T cell 
costimulation (Frauwirth and 
Thompson, 2002)

Tregs and activated T cells 
(non-Tregs)

Inducible T-cell costimulator ICOS/CD278 S Member of the CD28 family that 
has costimulatory functionality 
during T cell activation (Hutloff 
et al., 1999)

Migratory Effector Tregs 

(Vocanson, et al., 2010) and 
activated T cells

Neuropilin-1 Neuropilin-1 S Receptor for vascular endothelial 
growth factors and semaphorins 
(Gu et al., 2003)

nTregs (Weiss et al., 2012; 
Yadav et al., 2012), TFH cells 
(Renand et al., 2013), and 
CD8+ T cells (Jackson et al., 
2014)
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TABLE 2

dLN Migratory Effector Treg Population Expands During TDI Sensitization

CCR6+ % (of Tregs) 1 day 2 day 4 day 7 day 9 day

Acetone 11.14 ± 0.7 12.72 ± 1.03 10.86 ± 0.55 18.22 ± 1.36 9.23 ± 0.8

0.5% TDI 10.22 ± 0.68
17.7 ± 1.64

**
20.58 ± 0.84

****
26.54 ± 0.68

****
14.82 ± 0.99

**

4% TDI 10.02 ± 0.92 10.2 ± 1.1
30.7 ± 1.75

****
40.42 ± 1.87

****
25.02 ± 1.98

****

CCR6+ #(× 105 cells)

Acetone 0.2 ± 0.05 0.14 ± 0.04 0.19 ± 0.02 0.24 ± 0.04 0.16 ± 0.03

0.5% TDI
0.34 ± 0.06

*
0.61 ± 0.12

****
2.41 ± 0.19

****
2.35 ± 0.28

****
0.57 ± 0.13

****

4% TDI
0.533 ± 0.05

****
0.3 ± 0.07

**
5.25 ± 0.48

****
5.59 ± 0.41

****
1.99 ± 0.2

****

CD103+ % (of Tregs) 1 day 2 day 4 day 7 day 9 day

Acetone 22.86 ± 0.75 18.88 ± 4.24 20.82 ± 0.94 28.44 ± 2 21.18 ± 0.92

0.5% TDI 18.38 ± 0.84
24.44 ± 2.99

*
35.88 ± 0.84

****
38.8 ± 1.1

***
32.72 ± 2.23

****

4% TDI 19.62 ± 1.25 16.5 ± 1.64
43.18 ± 1.78

****
52.12 ± 1.36

****
44.64 ± 1.45

****

CD103+ #(× 105 cells)

Acetone 0.41 ± 0.09 0.16 ± 0.03 0.37 ± 0.04 0.38 ± 0.07 0.36 ± 0.06

0.5% TDI 0.59 ± 0.1
0.83 ± 0.15

****
4.21 ± 0.33

****
3.47 ± 0.45

****
1.22 ± 0.23

****

4% TDI
1.04 ± 0.06

****
0.48 ± 0.11

****
7.4 ± 0.63

****
7.23 ± 0.56

****
3.53 ± 0.23

****

ICOS+ % (of Tregs) 1 day 2 day 4 day 7 day 9 day

Acetone 13.38 ± 0.36 15.92 ± 1.21 13.56 ± 0.41 18.7 ± 1.22 15.98 ± 1.24

0.5% TDI 14.06 ± 1.03
36.42 ± 2.16

****
47.8 ± 1.15

****
38.38 ± 1.72

****
33.36 ± 2

****

4% TDI 16.68 ± 1.45
33.18 ± 1.27

****
62.64 ± 1.03

****
55.02 ± 2.12

****
45.54 ± 1.78

****

ICOS+ # (× 105 cells)

Acetone 0.23 ± 0.05 0.17 ± 0.04 0.24 ± 0.02 0.25 ± 0.04 0.28 ± 0.5

0.5% TDI
0.46 ± 0.09

**
1.31 ± 0.27

****
5.61 ± 0.45

****
3.42 ± 0.45

****
1.27 ± 0.26

****

4% TDI
0.88 ± 0.09

****
0.94 ± 0.18

****
10.68 ± 0.62

****
7.62 ± 0.62

****
3.62 ± 0.29

****

Data represents mean frequency and number of each Treg population 1–9 days following chemical exposure. Significance is indicated as follows:

*
P ≤ .05

**
P ≤ .01

***
P ≤ .001

****
and P ≤ .0001 for each group compared with the acetone control value from the matching time point.
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